Skip to main content

New imaging tool for diagnosing heart disease

An international team led by scientists from Lawson Health Research Institute and Cedars-Sinai Medical Center are the first to show that Magnetic Resonance Imaging (MRI) can be used to measure how the heart uses oxygen for both healthy patients and those with heart disease.
Reduced blood flow to the heart muscle is the leading cause of death in the Western world. Currently, the diagnostic tests available to measure blood flow to the heart require injection of radioactive chemicals or contrast agents that change the MRI signal and detect the presence of disease. There are small but finite associated risks and it is not recommended for a variety of patients including those with poor kidney function. More than 500,000 tests are performed each year in Canada.
"This new method, cardiac functional MRI (cfMRI), does not require needles or chemicals being injected into the body," says Dr. Frank Prato, Lawson Assistant Director for Imaging. "It eliminates the existing risks and can be used on all patients."
The team included researchers from Lawson; Cedars-Sinai Medical Center and University of California; King's College in the United Kingdom; University Health Network and the University of Toronto; Siemens Healthineers; and, University of Edinburgh in the United Kingdom.
"Our discovery shows that we can use MRI to study heart muscle activity," explains Dr. Prato. "We've been successful in using a pre-clinical model and now we are preparing to show this can be used to accurately detect heart disease in patients."
Repeat exposure to carbon dioxide is used to test how well the heart's blood vessels are working to deliver oxygen to the muscle. A breathing machine changes the concentration of carbon dioxide in the blood. This change should result in a change in blood flow to the heart, but does not happen when disease is present. The cfMRI method reliably detects whether these changes are present.
Other researchers have explored oxygenation-sensitive MRI but initial results contained a high level of 'noise' with blurry images. Project leader and partner Dr. Rohan Dharmakumar, Associate Director of the Biomedical Imaging Research Institute at Cedars-Sinai Medical Center, believed that the noise was actually variation in the heart's processing of oxygen. He engineered a way to average this variation and through testing at Lawson the team discovered that the noise is actually a new way to study how the heart works.
"We've opened the door to a new era and totally novel way of doing cardiac stress testing to identify patients with ischemic heart disease" says Dr. Dharmakumar. "This approach overcomes the limitations of all the current diagnostics -- there would no longer be a need for injections or physical stress testing like running on treadmills."
"Using MRI will not only be safer than present methods, but also provide more detailed information and much earlier on in the disease process," adds Dr. Prato. Following initial testing through clinical trials, he sees this being used with patients clinically within a few years.
In addition to studying coronary artery disease, the method could be used in other cases where heart blood flow is affected such as the effects of a heart attack or damages to the heart during cancer treatment. Due to its minimal risk, this new tool could be safely used with the same patient multiple times to better select the right treatment and find out early on if it is working. Dr. Prato notes that "with this new window into how the heart works, we have a lot to explore when it comes to the role of oxygen in health and disease."
Story Source:
Materials provided by Lawson Health Research Institute
Note: Content may be edited

Comments

Popular posts from this blog

Dark matter may be older than the Big Bang

Dark matter, which researchers believe make up about 80% of the universe's mass, is one of the most elusive mysteries in modern physics. What exactly it is and how it came to be is a mystery, but a new Johns Hopkins University study now suggests that dark matter may have existed before the Big Bang. The study, published August 7 in  Physical Review Letters , presents a new idea of how dark matter was born and how to identify it with astronomical observations. "The study revealed a new connection between particle physics and astronomy. If dark matter consists of new particles that were born before the Big Bang, they affect the way galaxies are distributed in the sky in a unique way. This connection may be used to reveal their identity and make conclusions about the times before the Big Bang too," says Tommi Tenkanen, a postdoctoral fellow in Physics and Astronomy at the Johns Hopkins University and the study's author. While not much is known about its origins,...

All of the starlight ever produced by the observable universe measured

All of the starlight ever produced by the observable universe measured The team's measurement, collected from Fermi data, has never been done before. This map of the entire sky shows the location of 739 blazars used in the Fermi Gamma-ray Space Telescope’s measurement of the extragalactic background light (EBL). The background shows the sky as it appears in gamma rays with energies above 10 billion electron volts, constructed from nine years of observations by Fermi’s Large Area Telescope. The plane of our Milky Way galaxy runs along the middle of the plot. From their laboratories on a rocky planet dwarfed by the vastness of space, Clemson University scientists have managed to measure all of the starlight ever produced throughout the history of the observable universe. Astrophysicists believe that our universe, which is about 13.7 billion years old, began forming the first stars when it was a few hundred million years old. Since then, the universe has become a st...

Reflecting antiferromagnetic arrangements

Reflecting antiferromagnetic arrangements : Brookhaven Lab physicists Claudio Mazzoli (left) and Mark Dean at the Coherent Soft X-ray Scattering (CSX) beamline at the National Synchrotron Light Source II. Mazzoli and Dean are part of the team of scientists led by Rutgers University that used the CSX beamline to image some magnetic domains in an iron-based 'antiferromagnetic' material. The ability to image these domains is key to developing spintronics, or spin electronics, for practical applications. A team led by Rutgers University and including scientists from the U.S. Department of Energy's (DOE) Brookhaven National Laboratory has demonstrated an x-ray imaging technique that could enable the development of smaller, faster, and more robust electronics. Described in a paper published on Nov. 27 in  Nature Communications , the technique addresses a primary limitation in the emerging research field of "spintronics," or spin electronics, using magneti...