Skip to main content

Quantum music to my ears

It sounds like an old-school vinyl record, but the distinctive crackle in the music streamed into Chris Holloway's laboratory is atomic in origin. The group at the National Institute for Standards and Technology, Boulder, Colorado, spent a long six years finding a way to directly measure electric fields using atoms, so who can blame them for then having a little fun with their new technology?
"My vision is to cut a CD in the lab -- our studio -- at some point and have the first CD recorded with Rydberg atoms," said Holloway. While he doesn't expect the atomic-recording's lower sound quality to replace digital music recordings, the team of research scientists is considering how this "entertaining" example of atomic sensing could be applied in communication devices of the future.
"Atom-based antennas might give us a better way of picking up audio data in the presence of noise, potentially even the very weak signals transmitted in deep space communications," said Holloway, who describes his atomic receiver in AIP Advances, from AIP Publishing.
The atoms in question -- Rydberg atoms -- are atoms excited by lasers into a high energy state that responds in a measurable way to radio waves (an electric field). After figuring out how to measure electric field strength using the Rydberg atoms, Holloway said it was a relatively simple step to apply the same atoms to record and play back music -- starting with Holloway's own guitar improvisations in A minor.
They encoded the music onto radio waves in much the same way cellphone conversations are encoded onto radio waves for transmission. The atoms respond to these radio waves, and in turn, the laser beams shined through the Rydberg atoms are affected. These changes are picked up on a photodetector, which feeds an electric signal into the speaker or computer -- and voila! The atomic radio was born.
The team used their quantum system to pick up stereo -- with one atomic species recording the instrumental and another the vocal at two different sets of laser frequencies. They selected a Queen track -- "Under Pressure" -- to test if their system could handle Freddie Mercury's extensive vocal range.
"One of the reasons for cutting stereo was to show that this one receiver can pick up two channels simultaneously, which is difficult with conventional receivers," said Holloway, who explained that although it is the early days for atomic communications, there is potential to use this to improve the security of communications.
For now, Holloway's team are staying tuned into atomic radio as they try to determine how weak a signal the Rydberg atoms can detect, and what data transfer speeds can be achieved.
They are not forgetting the atomic record they want to produce, with which they hope to inspire the next generation of quantum scientists.
Story Source:
Materials provided by American Institute of Physics
Note: Content may be edited.

Comments

Popular posts from this blog

Dark matter may be older than the Big Bang

Dark matter, which researchers believe make up about 80% of the universe's mass, is one of the most elusive mysteries in modern physics. What exactly it is and how it came to be is a mystery, but a new Johns Hopkins University study now suggests that dark matter may have existed before the Big Bang. The study, published August 7 in  Physical Review Letters , presents a new idea of how dark matter was born and how to identify it with astronomical observations. "The study revealed a new connection between particle physics and astronomy. If dark matter consists of new particles that were born before the Big Bang, they affect the way galaxies are distributed in the sky in a unique way. This connection may be used to reveal their identity and make conclusions about the times before the Big Bang too," says Tommi Tenkanen, a postdoctoral fellow in Physics and Astronomy at the Johns Hopkins University and the study's author. While not much is known about its origins,...

Home births as safe as hospital births: International study suggests

A large international study led by McMaster University shows that low risk pregnant women who intend to give birth at home have no increased chance of the baby's perinatal or neonatal death compared to other low risk women who intend to give birth in a hospital. The results have been published by  The Lancet 's  EClinicalMedicine  journal. "More women in well-resourced countries are choosing birth at home, but concerns have persisted about their safety," said Eileen Hutton, professor emeritus of obstetrics and gynecology at McMaster, founding director of the McMaster Midwifery Research Centre and first author of the paper. "This research clearly demonstrates the risk is no different when the birth is intended to be at home or in hospital." The study examined the safety of place of birth by reporting on the risk of death at the time of birth or within the first four weeks, and found no clinically important or statistically different risk between home...

GSAT-11 satellite to be launched from French Guiana on Dec 5th

GSAT-11 satellite to be launched from French Guiana on Dec 5th GSAT-11 would be located at 74 East and is the fore-runner in a series of advanced communications satellite with multi-spot beam antenna coverage over Indian mainland and Islands, ISRO said. GSAT-11 is the next generation “high throughput” communication satellite configured around ISRO’s I-6K Bus. (PTI/Representational). Indian space agency ISRO is scheduled to launch GSAT-11, the “heaviest” satellite built by it, on-board Ariane-5 rocket of Arianespace from French Guiana on December 5. Weighing about 5,854 kg, GSAT-11 would play a vital role in providing broadband services across the country, and also provide a platform to demonstrate new generation applications, the Indian Space Research Organisation (ISRO) said. It is the “heaviest” satellite built by ISRO, the space agency said. GSAT-11 is the next generation “high throughput” communication satellite configured around ISRO’s  I-6K Bus, and it...