Skip to main content

Cool halo gas caught spinning like galactic disks

A group of astronomers led by Crystal Martin and Stephanie Ho of the University of California, Santa Barbara, has discovered a dizzying cosmic choreography among typical star-forming galaxies; their cool halo gas appears to be in step with the galactic disks, spinning in the same direction.
The researchers used W. M. Keck Observatory to obtain the first-ever direct observational evidence showing that corotating halo gas is not only possible, but common. Their findings suggest that the whirling gas halo will eventually spiral in towards the disk.
"This is a major breakthrough in understanding how galactic disks grow," said Martin, Professor of Physics at UC Santa Barbara and lead author of the study. "Galaxies are surrounded by massive reservoirs of gas that extend far beyond the visible portions of galaxies. Until now, it has remained a mystery how exactly this material is transported to galactic disks where it can fuel the next generation of star formation."
The study is published in today's issue of the Astrophysical Journal and shows the combined results of 50 standard star-forming galaxies taken over a period of several years.
Nearly a decade ago, theoretical models predicted that the angular momentum of the spinning cool halo gas partially offsets the gravitational force pulling it towards the galaxy, thereby slowing down the gas accretion rate and lengthening the period of disk growth.
The team's results confirm this theory, which show that the angular momentum of the halo gas is high enough to slow down the infall rate but not so high as to shut down feeding the galactic disk entirely.
The astronomers first obtained spectra of bright quasars behind star-forming galaxies to detect the invisible halo gas by its absorption-line signature in the quasar spectra. Next, the researchers used Keck Observatory's laser guide star adaptive optics (LGSAO) system and near-infrared camera (NIRC2) on the Keck II telescope, along with Hubble Space Telescope's Wide Field Camera 3 (WFC3), to obtain high-resolution images of the galaxies.
"What sets this work apart from previous studies is that our team also used the quasar as a reference 'star' for Keck's laser guide star AO system," said co-author Ho, a physics graduate student at UC Santa Barbara. "This method removed the blurring caused by the atmosphere and produced the detailed images we needed to resolve the galactic disks and geometrically determine the orientation of the galactic disks in three-dimensional space."
The team then measured the Doppler shifts of the gas clouds using the Low Resolution Imaging Spectrometer (LRIS) at Keck Observatory, as well as obtaining spectra from Apache Point Observatory. This enabled the researchers to determine what direction the gas is spinning and how fast. The data proved that the gas is rotating in the same direction as the galaxy, and the angular momentum of the gas is not stronger than the force of gravity, meaning the gas will spiral into the galactic disk.
"Just as ice skaters build up momentum and spin when they bring their arms inward, the halo gas is likely spinning today because it was once at much larger distances where it was deposited by galactic winds, stripped from satellite galaxies, or directed toward the galaxy by a cosmic filament," said Martin.
The next step for Martin and her team is to measure the rate at which the halo gas is being pulled into the galactic disk. Comparing the inflow rate to the star formation rate will provide a better timeline of the evolution of normal star-forming galaxies, and explain how galactic disks continue to grow over very long timescales that span billions of years.
Story Source:
Materials provided by W. M. Keck Observatory
Note: Content may be edited.

Comments

Popular posts from this blog

Dark matter may be older than the Big Bang

Dark matter, which researchers believe make up about 80% of the universe's mass, is one of the most elusive mysteries in modern physics. What exactly it is and how it came to be is a mystery, but a new Johns Hopkins University study now suggests that dark matter may have existed before the Big Bang. The study, published August 7 in  Physical Review Letters , presents a new idea of how dark matter was born and how to identify it with astronomical observations. "The study revealed a new connection between particle physics and astronomy. If dark matter consists of new particles that were born before the Big Bang, they affect the way galaxies are distributed in the sky in a unique way. This connection may be used to reveal their identity and make conclusions about the times before the Big Bang too," says Tommi Tenkanen, a postdoctoral fellow in Physics and Astronomy at the Johns Hopkins University and the study's author. While not much is known about its origins,...

Home births as safe as hospital births: International study suggests

A large international study led by McMaster University shows that low risk pregnant women who intend to give birth at home have no increased chance of the baby's perinatal or neonatal death compared to other low risk women who intend to give birth in a hospital. The results have been published by  The Lancet 's  EClinicalMedicine  journal. "More women in well-resourced countries are choosing birth at home, but concerns have persisted about their safety," said Eileen Hutton, professor emeritus of obstetrics and gynecology at McMaster, founding director of the McMaster Midwifery Research Centre and first author of the paper. "This research clearly demonstrates the risk is no different when the birth is intended to be at home or in hospital." The study examined the safety of place of birth by reporting on the risk of death at the time of birth or within the first four weeks, and found no clinically important or statistically different risk between home...

GSAT-11 satellite to be launched from French Guiana on Dec 5th

GSAT-11 satellite to be launched from French Guiana on Dec 5th GSAT-11 would be located at 74 East and is the fore-runner in a series of advanced communications satellite with multi-spot beam antenna coverage over Indian mainland and Islands, ISRO said. GSAT-11 is the next generation “high throughput” communication satellite configured around ISRO’s I-6K Bus. (PTI/Representational). Indian space agency ISRO is scheduled to launch GSAT-11, the “heaviest” satellite built by it, on-board Ariane-5 rocket of Arianespace from French Guiana on December 5. Weighing about 5,854 kg, GSAT-11 would play a vital role in providing broadband services across the country, and also provide a platform to demonstrate new generation applications, the Indian Space Research Organisation (ISRO) said. It is the “heaviest” satellite built by ISRO, the space agency said. GSAT-11 is the next generation “high throughput” communication satellite configured around ISRO’s  I-6K Bus, and it...